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One intuitive way of thinking about a Markov chain would be to imagine it as a molecule 

performing random movements in a gas or fluid. We imply an important assumption that the 

molecule has no memory, i.e. its next move depends solely on its current position and does 

not depend on any of its previous positions. In this case, such memory-less process is called a 

Markov chain. Current position 𝑥𝑛 of the molecule at time n is called a current state of the 

Markov chain. If time n is continuous, the process is called time-continuous Markov Process. 

Hereafter we will consider only Markov chains with discrete time. The position 𝑥0 of the 

molecule at time n=0 is called an initial state of the Markov chain. The space of all possible 

positions of the molecule is called a state space, on which a Markov chain is defined. The 

molecule moves probabilistically in this medium, such that for each current position of the 

molecule (current state) 𝑥𝑛 and any desired position 𝑥𝑛+1 (proposal state) for the next move 

there is defined a conditional transition probability 𝑇(𝑥𝑛+1 𝑥𝑛 of performing such move. 

Now we will move away of the molecule example. That means that the state 𝑥 of the Markov 

chain can belong to any abstract state space Ω. For example, as we will see later a state 𝑥 can

correspond to a complete light path from a light source to a camera sensor.
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The random walk implicitly defines the conditional transition probability 𝑇 for every move. For 

every current state 𝑖 and a proposal state 𝑗 at move 𝑛 a transition probability 𝑇(𝑥𝑛+1 =
𝑗 𝑥𝑛 = 𝑖 is defined. Hereafter we will denote this probability simply as 𝑇𝑖→𝑗 for brevity. After 𝑛

moves we can build a histogram of all visited states up to the move 𝑛. This histogram forms a 

posterior probability distribution which evolves with every move 𝑛. This posterior distribution is

induced by the constructed Markov chain.

One important property of the transition probability is called detailed balance. It implies 

symmetry of the transition probability, i.e. the transition from state 𝑖 to state 𝑗 is equally 

probable as the transition back from 𝑗 to 𝑖. Intuitively that means that the random walk can be 

reversed. A Markov chain running with such symmetric transition probability is called a 

reversible Markov chain. Physically speaking, detailed balance implies that, the random walk 

from state i to state j is always compensated by the reverse random walk, keeping the system 

in equilibrium.
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If the detailed balance is obeyed and all states of the path space can be reached by the 

proposed transition rules the proposal distribution then a Markov chain converges to a unique 

stationary distribution as number of moves 𝑛 → ∞. 

Such stationary distribution is called an equilibrium or target distribution of a constructed 

Markov chain and the chain is called ergodic. 

The trajectory to the target distribution can take many steps and depends on the initial state 𝑥0
of the Markov chain. Illustration on the right show three different Markov chains (yellow, green 

and blue) converging to the same equilibrium distribution from different initial states. The 

highlighted equilibrium zone roughly denote the high-probability region of the unimodal 

banana-shaped target distribution and receives the most samples. 

The zone on the right half of the illustration shows the so-called “burn-in zone” – the phase 

when a Markov chain is located in the regions of low probability of the target distribution. If 

such phase it too long, it can shift the resulting posterior distribution from the target distribution, 

because a lot of visited states can lie in the low-probability regions of the target distribution. 

Thus this effect caused by a not properly chosen initial state is called start-up bias. 

So practically it is very important to seed a Markov chain with an initial state that lies in high 

probability regions of the target distribution. That leads to faster convergence of the posterior 

distribution to the target distribution.
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Assume we have some function 𝑓 that can be evaluated point-wise. We cannot directly sample 

from 𝑓. However we still want to sample proportionally to 𝑓.

We can construct a Markov chain, whose posterior distribution converges to the function of 

interest 𝑓 accurate to the normalization factor (since 𝑓 is generally not normalized). This 

method was first proposed by Metropolis in 1953 and then generalized by Hastings in 1970 for 

arbitrary target distributions. The idea is to alter the transition distribution by affecting it by a 

conditional rejection sampling probability based on the desired target distribution. This 

probability is similar to the ordinary rejection sampling probability, however the key difference 

is that it is conditional on the current state, that is, 𝑎𝑖→𝑗 =
𝑓𝑗

𝑓𝑖
means that it’s a probability of 

conditionally accepting the new proposal state 𝑗 given current state 𝑖. It is called an acceptance

probability because at each move 𝑛 of the Markov chain we either accept the proposal state 𝑗
with probability 𝑎𝑖→𝑗 or otherwise reject it and keep the current state 𝑖 (with probability 1 − 𝑎𝑖→𝑗
accordingly).

Given that the transition probability is selected such that the detailed balance is obeyed, the 

posterior distribution of the constructed Markov chain will converge to the desired target 

function 𝑓. Note that the detailed balance equation is affected by this acceptance probability. 

Important to note that the Metropolis-Hastings algorithm always constructs a normalized pdf, 

while the original target function is not necessarily (and is usually not) normalized. Thus this 

poses another important problem of finding the normalization constant of 𝑓, i.e. the integral of 𝑓
over the whole state space. This can be as hard as the original problem. However we will see 

that for particular needs of light transport it can be easily estimated using one of alternative 

methods.
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Here we show a simple step-by-step example of Metropolis-Hastings algorithm in action. We 

consider a simple 1D case of unimodal normal distribution ℕ depicted in green. We will run 

Markov chain with uniform random walk and the acceptance probability being the ratio of 

values of proposal to current state, as was described. 

We start with some initial state 𝑥0 chosen to be close to the high-density region of the target 

function.

This already forms the posterior distribution with one bar of the histogram, depicted in red 

under the position of the initial state.
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In order to make the first move we generate a proposal state 𝑥1 with uniform random walk and 

compute the acceptance probability as 𝑎𝑥0→𝑥1 =
ℕ(𝑥1)

ℕ 𝑥0
> 1. That implies an unconditional 

acceptance of the new proposal state.

9



At the second step again we generate a new proposal, this time from a low-density region. 

Thus the acceptance probability 𝑎𝑥1→𝑥2 =
ℕ(𝑥2)

ℕ 𝑥1
is very low. Thus if we make a move, most

probably such a proposal will be rejected.

It is important to note at this point that the current state of the Markov chain does not change 

(𝑥2 becomes 𝑥1), however every move affects the histogram. Thus the peak at the current 

state become more prominent.
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Now we generate a proposal in a high-density region. That leads to unconditional acceptance 

of the new proposal 𝑥3.
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The next proposal is also rejected due to the low value of the target function. Again that leads 

to one more sample added to the histogram at the current state.
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One more time the proposal is rejected. This is the natural behavior if the chain is stuck in a 

very high-density region of the target function. Note that many sequential rejections might also 

increase the correlation of samples, thus slowing down the convergence.
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This is the posterior distribution produced by the Markov chain after 20 moves.

14



This is the posterior distribution produced by the Markov chain after 200 moves.
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This is the posterior distribution produced by the Markov chain after 2000 moves. As we can 

see the posterior distribution closely converges to the target function.
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In practical situations, doing just a uniform random walk around the state space might lead to a 

poor exploration of state space (important features might be missing or under-sampled).

In this case, one can generate new proposals according to some importance function T, which 

is somewhat similar to f. 

This is almost equivalent to the importance sampling technique used in Monte Carlo.

The key difference is that such importance function in MCMC can also depend and rely on the 

current state! This function is called transition probability function.

And the acceptance rate should account for this transition probability similarly to Monte Carlo 

methods (by dividing the value of f by the probability of sampling it).
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This table shows the correspondence between the major terms and properties used in ordinary 

Monte Carlo (MC) to the equivalent terms used in Markov Chain Monte Carlo (MCMC).

Note that the theoretical convergence of MCMC methods can be fundamentally different 

comparing to ordinary MC methods.

The convergence in context of Markov chains is usually referring to the convergence of the 

posterior distribution to the target distribution (in some norm, for example, in total variation).

We have transition probability instead of importance function. Note that we have much more 

freedom in constructing this transition probability function, because we can also rely on the 

current state of a Markov chain.

The error of MH is very hard to compute, since the samples are inherently correlated. So, we 

cannot use just variance anymore. Acceptance rate can be a good initial indicator of the 

MCMC sampler performance. 

And, instead of number of samples, we have number of moves made by Markov chain.
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Now, I’ll try to explain how we can apply MH algorithm in the context of light transport.
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In order to achieve more efficient exploration of the path space and utilize the potential 

correlation between the separate integrals for each pixel, we reduce the task to a single 

integral. Each pixel integral can be then deduced by applying a pixel filter.

This single integral computes the distribution of flux on the image plane. 

Then we can obtain the image by just distributing the corresponding samples from the 

posterior distribution into the corresponding bins of image pixels. 

This way the MH algorithm is able to freely walk over the complete image plane while 

exploring important parts of the image adaptively.
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So, ideally, we are interested in all possible trajectories (paths) from light source to camera.

This naturally forms the state space for a Markov chain: now each state is a full path from light 

source to the camera. This state space is called a path space in light transport. 

How would one define a target function for Metropolis-Hastings algorithm in context of light 

transport?

Ideally, we’re interested in the equilibrium distribution of flux incident to the image plane.
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Thus, as was explained before by Jaroslav, we can introduce the measurement contribution 

function for a path x_k.

It consists of subsequently interleaved events: emission(L_e)->propagation(G)-

>scattering(f_r)->propagation(G)-> ….  -> absorption by sensor (W_e)

and provides the contribution carried by the path.
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Let’s take a closer look at the physical meaning of the measurement contribution 𝑓.

Eric Veach showed in his PhD thesis that we can define the measurement contribution as 

chain derivative of energy with respect to surface areas at each interaction. By folding the 

product, we get that the measurement contribution 𝑓 is a derivative of energy function 𝑄 with 

respect to the area product measure 𝜇𝑘. 

The physical quantity of the measurement contribution is Watts per square meter to the 𝑘th

power.

Intuitively, it defines an energy flow through a differential beam around the path.

In other words, we count the number of photons going through the infinitesimal beam around 

the path.

This definition reveals the underlying physical justification behind Metropolis light transport.
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In context of MH, we always need to be able to compare two different paths.

As we know, the measurement contribution f provides the amount of flux going through the 

infinitesimal beam around the path.

This makes the paths of equal length directly comparable to each other in terms of the carried 

energy.

The only remaining question is how to compare paths of different lengths?

Interestingly, if we define our integration measure as a product area measure, which adjusts 

based on the path length, then we can directly compare the amount of energy (e.g. number of 

photons) going through the path.
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So, we can construct a MH integration process for all paths of the same length k. 

However, we need to construct a single generalized integral.

This can be done by just treating this family of integrals as a single generalized path integral. 

In this case, we can introduce a generalized product area measure 𝑑𝜇 as a sum measure.

This enables us to use a single integral for paths of all lengths for MH.

Moreover, this way we can compare all paths and even groups of paths with each other in the 

context of carried energy (flux).
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We showed how light transport can be reformulated for MH integration.

Now I’ll outline the actual steps of the MLT algorithm:

1. We generate an initial state (full path) of a Markov chain using one of the existing sampling 

methods (e.g. PT or BDPT).

2. Then we start the actual mutation process. Mutate the current path using one of the 

available mutation strategies, compute the transition probability.

3. Compute the acceptance probability, accept the new proposed path according to this 

probability.

4. Accumulate the contribution of the current path to the image plane, apply pixel filter to bin 

the path into the corresponding pixel in-place.

5. Proceed to step 2 to cycle the random walk.
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I’d like to emphasize that we have already quite good methods for image rendering, like BDPT.

So, why do we need yet another, way more complicated rendering method?

First of all, MLT is much more robust to the complex light paths, meaning that it tries to 

“remember” the successful paths. That is, the current state of a Markov chain is always a 

correct full path from light source to the camera.

As another advantage, Markov chain can easily explore the similar surrounding paths by 

perturbing the current path slightly, thus exploring the whole illumination features at a low cost. 

On the other hand, this can also cause some unwanted correlation of samples, slowing down 

the rendering convergence.

And last, but not the least, MLT framework provides us the great freedom of constructing path 

generators for almost any special situation.

27



ERPT utilizes the fact that independent samplers, like BDPT, already provide a very good 

distribution. 

The idea is to try to redistribute the amount of energy carried by each initial path.

In order to do that, multiple Markov chains are started with the same seed path, the number of 

chains is computed adaptively based on the path energy.

This scheme is very similar to the lens mutation proposed by Eric Veach with the number of 

mutations between reseedings of the chain being very low.

Efficiency of ERPT depends a lot on the seeding sampler – how good it is. E.g. BDPT w/o MIS 

provides very unbalanced sampling, leading to ERPT being stuck for a long time in some 

regions due to high redistribution workload.

Moreover, the distribution region is manually set, making it non-trivial to tweak the parameters 

to achieve the best redistribution vs. stratification trade-off.
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Replica exchange has been known for a while in statistical MCMC field and was recently 

introduced in context of light transport. 

The idea is relatively simple. Imagine that one mutation strategy can easily discover important 

features and another mutation strategy can easily explore such features, but has difficulties 

discovering them.

In this case, we can run two separate chains with these two strategies, and once the 

“discovering” chain has found a feature, it passes this feature to another chain to explore it. 

This way the “discovering” chain is responsible for finding important features, while these 

features can be efficiently explored by the second chain.
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The key difference of MLT compared to the usual MCMC situation is that we already have 

methods that can generate an image well in most situations.

So, many regular MCMC problems like normalization constant estimation and start-up bias are 

solved easier.

For example, in order to compute the normalization constant, which is just an average flux 

received by the image plane, it is practically sufficient to sample a few hundred thousand paths 

with BDPT, which is a negligible cost comparing to the actual image rendering.

As for the start-up bias, we can seed Markov chains directly within the high-probability regions 

of the target distribution. 

The usual practice is to collect many samples from BDPT and then seed Markov chain with 

one importance-sampled w.r.t. the path contribution. In case of many chains, their initial states 

can be also stratified with respect to the path contribution to have a good initial coverage of the 

path space.

And it also scales naturally well with tens of thousands of Markov chains for massively parallel 

devices like GPUs.
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Let’s try to understand how to mutate the paths.
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First of all, it is important to understand what criteria should an ideal mutation strategy fulfill.

So, the mutation should be as lightweight as possible, that is, it should try to introduce minimal 

changes to the path, triggering as few vertex updates as possible.

Then it should also produce a sequence of samples with low correlation, doing large steps in 

path space.

Also, specific to the image rendering process, the mutation should try to sample the image 

plane as uniform as possible. That is usually hard to control in the context of MCMC, thus the 

best practice is to reseed the chain with paths stratified over the image plane.

And finally, it is completely fine if the mutation can efficiently explore only some certain subset 

of path space, for example only caustics, leaving other features to other specialized mutations.

In the end, that is one of the advantages of MLT.
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Now I’ll do an overview of the existing mutation strategies.
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Eric Veach has first introduced MLT and proposed the original set of mutation strategies.

We can roughly classify them into two groups.

The first group perturbs the current path slightly, thus such mutations are called perturbations.

They are mostly crafted to efficiently explore the image plane and such difficult effects as 

caustics and chains of them.

Another group of mutations tries to do large changes to the path.

Namely, bidirectional mutation works similarly to BDPT, with the only difference that it 

completely resamples not the full path, but a randomly selected subpath of the current path.

Lens mutation reseeds the chain with a path from the pool of paths stratified over the image 

plane. 
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A popular mutation proposed by Kelemen is to mutate the paths in the so-called primary 

sample space, that is, the original space of the importance functions used for constructing the 

path in BDPT and PT.

Usually it is represented as a vector of random numbers in the unit hypercube, which is 

perturbed using some symmetric probability, like a multidimensional Gaussian distribution.

The major assumption is that the importance sampling functions already make the integrand 

flat enough that we can walk it using some uniform random walk in this primary space.
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The good thing about this strategy is that a lot of terms in the ratio of measurement contribution 

to the transition probability (that is required to compute the acceptance probability) just cancel 

out. 

Thus, since the perturbation probability is also symmetric, the final acceptance probability is 

computed as a ratio of the simple path throughputs computed by PT or BDPT. [This makes it 

very simple to implement such a mutation strategy: just take an existing PT or BDPT, replace 

the random number generator by a replayeable sampler with symmetric perturbation and use 

the ratio of throughputs as an acceptance probability.]

In order to discover new features quicker, we also need to do some large steps. For this 

reason a large step mutation was proposed. The idea here is also simple: just regenerate the 

complete random vector from scratch and try to construct a path. That is equivalent to just 

generating a random path with PT / BDPT.
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Yet another recent mutation strategy that was introduced by Wenzel Jakob is called manifold 

exploration.

This is a supplementary mutation strategy, which is meant to replace the set of Veach’s

perturbations.

The idea here is that the path is perturbed from some vertex and then in order to construct the 

new subpath, first we construct a local on-surface parameterization of the current path and try 

to iteratively construct the new path in the space of this local tangent frame parameterization. 

The idea comes from the differential geometry. This mutation tries to preserve hard 

constraints, like specular reflections, by utilizing the local knowledge about the geometry 

around the current path.

This way, manifold exploration can, for example, construct a connection from one point to 

another through a chain of specular or highly-glossy interactions. 

In fact, this strategy tries to “lock in”/eliminate some of the integration dimensions (with 

specular/glossy interactions), while sampling others. 

As a consequence, it tries to keep the measurement contribution function as constant as 

possible by locking or just slightly changing the terms of the measurement contribution function 

corresponding to the locked dimensions. 

This strategy is similar to Gibbs sampling known from statistical MCMC.
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Some strategies and methods can be combined with each other.

The original set of mutations can be augmented by manifold exploration.

Also the same can be done in the context of ERPT.

Moreover, another yet unexplored option is to combine the original set of mutations with 

Kelemen mutation.
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Population methods can be used on top of MLT.

40



Population Monte Carlo framework stems from genetic algorithms.

Its idea is to keep a population of Markov chains (in our case it can be paths).

This method is a high-level superstructure, which can sit, for example, on top of an existing 

Metropolis-Hastings sampler.

Firstly, we keep only relevant samples in the population. This is done by the elimination and 

regeneration: the chains with a small contribution (under some threshold) are eliminated and 

being reseeded from the chains with very high contribution. It essentially dynamically 

rebalances the sampling efforts to the important places of the state space.

Moreover, we can adopt the mutation parameters (like a step size) based on the past samples 

and the state of the whole population on the fly. 
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Population Monte Carlo framework was applied to light transport by Lai et al. in the context of 

ERPT.

The process is similar to ERPT, yet it keeps the constant population of chains by reseeding the 

chains with low contribution from a pool of stratified paths.

The core idea is to use a set of existing mutation strategies, where each strategy can be 

present multiple times with different user-defined parameters, like step size. For example, the 

set might contain three caustics perturbation with different perturbation sizes and so on. The 

selection weights are then adjusted for these mutations on the fly based on the performance of 

each mutation. This process quickly emphasizes mutations with good performance, making the 

transition probability adapting to the data.

In the original paper, the authors propose to use caustics and lens perturbations.

However, in the second part of the course, we will demonstrate this method with multiple 

manifold exploration mutations with different perturbation parameters.
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